11 research outputs found

    Identification of the transition rule in a modified cellular automata model: the case of dendritic NH4Br crystal growth

    Get PDF
    A method of identifying the transition rule, encapsulated in a modified cellular automata (CA) model, is demonstrated using experimentally observed evolution of dendritic crystal growth patterns in NH4Br crystals. The influence of the factors, such as experimental set-up and image pre-processing, colour and size calibrations, on the method of identification are discussed in detail. A noise reduction parameter and the diffusion velocity of the crystal boundary are also considered. The results show that the proposed method can in principle provide a good representation of the dendritic growth anisotropy of any system

    Identification of geometrical models of interface evolution for dendritic crystal growth

    Get PDF
    This paper introduces a method for identifying geometrical models of interface evolution, directly from experimental imaging data. These local growth models relate normal growth velocity to curvature and its derivatives estimated along the growing interface. Such models can reproduce many qualitative features of dendritic crystal growth as well as predict quantitatively its early stages of evolution. Numerical simulations and experimental crystal growth data are used to demonstrate the applicability of this approach

    Spatio-temporal modelling of wave formation in an excitable chemical medium based on a revised FitzHugh-Nagumo model

    Get PDF
    The wavefront profile and the propagation velocity of waves in an experimentally observed Belousov-Zhabotinskii reaction are analyzed and a revised FitzHumgh-Nagumo(FHN) model of these systems is identified. The ratio between the excitation period and the recovery period, for a solitary wave are studied, and included within the model. Averaged travelling velocities at different spatial positions are shown to be consistent under the same experimental conditions. The relationship between the propagation velocity and the curvature of the wavefront are also studied to deduce the diffusion coefficient in the model, which is a function of the curvature of the wavefront and not a constant. The application of the identified model is demonstrated on real experimental data and validated using multi-step ahead predictions

    Identification of excitable media using a scalar coupled map lattice model

    Get PDF
    The identification problem for excitable media is investigated in this paper. A new scalar coupled map lattice (SCML) model is introduced and the orthogonal least squares algorithm is employed to determinate the structure of the SCML model and to estimate the associated parameters. A simulated pattern and a pattern observed directly from a real Belousov-Zhabotinsky reaction are identified. The identified SCML models are shown to possess almost the same local dynamics as the original systems and are able to provide good long term predictions

    Identification of a temperature dependent FitzHugh-Nagumo model for the Belousov-Zhabotinskii reaction

    Get PDF
    This paper describes the identification of a temperature dependent FitzHugh-Nagumo model directly from experimental observations with controlled inputs. By studying the steady states and the trajectory of the phase of the variables, the stability of the model is analysed and a rule to generate oscillation waves is proposed. The dependence of the oscillation frequency and propagation speed on the model parameters is then investigated to seek the appropriate control variables, which then become functions of temperature in the identified model. The results show that the proposed approach can provide a good representation of the dynamics of the oscillatory behaviour of a BZ reaction

    Identification of radius-vector functions of interface evolution for star-shaped crystal growth

    Get PDF
    This paper introduces a new method based on a radius-vector function for identifying the spatio-temporal transition rule of star-shaped crystal growth directly from experimental crystal growth imaging data. From the morphology point of view, the growth is decomposed as initial conditions, uniform growth and directional growth, which is represented by a static polynomial model based on the Fourier expansion. A recursive model is also introduced to help understand the dynamic characteristics of the observed systems. The applicability of the proposed approach is demonstrated using data from a simulation and from a real crystal growth experiment

    Seeded crystal growth of the acentric organic nonlinear optical material methyl-p-hydroxybenzoate from the vapor phase

    Get PDF
    Using in situ differential interference contrast microscopy (DICM), growth morphology, structure, and step velocities of the vicinal hillocks on {110} and {111̅} faces of MHB crystal seeds growing from the vapor phase have been investigated over a supersaturation (σ) range of (0.2 < σ < 0.6). Under these conditions of supersaturation, a dislocation induced growth mechanism was identified. Ex situ atomic force microscopy (AFM) shows that some dislocation induced hillocks exhibit hollow cores. The general observations of the {110} and {111̅} surfaces reveal that these faces follow a classical mode of layer growth, continuous generation of new layers by dislocation outcrops, which subsequently bunch and spread to cover the entire facets. A tangential step velocity of the slow and fast sides of {110} and {111̅} growth hillocks show a linear dependence with supersaturation in the region of (0.2 < σ < 0.4). Analysis of this dependence leads to the respective growth parameters for the identified growth mechanism: the activation energies for the slow and fast step motion of a growth hillock (EaS and EaF) and the corresponding kinetic coefficients (βaS and βaF), for both faces. The growth from physical vapor transport (PVT) shows that for the title material, as with a number of other polar materials, solvent poisoning is not the cause of the highly differential growth rates and is an intrinsic feature of the crystal. The results suggest that in terms of the production of large single crystals of high perfection by PVT, the supersaturation range for dislocation growth should be between 0.2 and 0.4. These findings provide a foundation for the rational design of large MHB crystals that may find applications utilizing their high optoelectronic potential

    para-Acetoxyacetanilide

    No full text
    para-Acetoxyacetanilide, C~0H~INO3, is a habit modifier of the analgesic para-hydroxyacetanilide. Its structure is compared to that of para-hydroxyacetanilide and other simple biologically active acetanilides. The main difference is found to be its non-planar nature; the dihedral angle between the planes of the aryl ring and the acetoxy group is 83.5 (6)
    corecore